Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations.

نویسندگان

  • Caroline Robberecht
  • Thierry Voet
  • Masoud Zamani Esteki
  • Beata A Nowakowska
  • Joris R Vermeesch
چکیده

Large-scale analysis of balanced chromosomal translocation breakpoints has shown nonhomologous end joining and microhomology-mediated repair to be the main drivers of interchromosomal structural aberrations. Breakpoint sequences of de novo unbalanced translocations have not yet been investigated systematically. We analyzed 12 de novo unbalanced translocations and mapped the breakpoints in nine. Surprisingly, in contrast to balanced translocations, we identify nonallelic homologous recombination (NAHR) between (retro)transposable elements and especially long interspersed elements (LINEs) as the main mutational mechanism. This finding shows yet another involvement of (retro)transposons in genomic rearrangements and exposes a profoundly different mutational mechanism compared with balanced chromosomal translocations. Furthermore, we show the existence of compound maternal/paternal derivative chromosomes, reinforcing the hypothesis that human cleavage stage embryogenesis is a cradle of chromosomal rearrangements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.

Unbalanced translocations are a relatively common type of copy number variation and a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. Fifty-one are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints inv...

متن کامل

Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes.

Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs o...

متن کامل

Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination

Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate ...

متن کامل

Electronic letter Two further cases of WHS with unbalanced de novo translocation t(4;8) characterised by CGH and FISH

EDITOR—In the October 2000 issue of the journal, five new cases of unbalanced translocations with partial monosomy 4p and partial trisomy 8p were described by Wieczorek et al and the authors concluded that de novo translocations causing Wolf-Hirschhorn syndrome (WHS) are more frequent than previously estimated. In particular, unbalanced de novo translocations involving the short arms of chromos...

متن کامل

Molecular spectrum of spontaneous de novo mutations in male and female germline cells of Drosophila melanogaster.

We carried out mutation screen experiments to understand the rate and molecular nature of spontaneous de novo mutations in Drosophila melanogaster, which are crucial for many evolutionary issues, but still poorly understood. We screened for eye-color and body-color mutations that occurred in the germline cells of the first generation offspring of wild-caught females. The offspring were from mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2013